claims without departing from the teachings thereof. All such modifications are intended to be encompassed within the claims of the invention.

Embodiments of the Invention:

A1. A pharmaceutical composition comprising an effective amount of a compound of the formula:

$$R^{7}$$
 R^{6}
 R^{7}
 R^{7}
 R^{6}
 R^{7}
 R^{7}
 R^{6}
 R^{7}
 R^{7

wherein R¹ and R² are independently selected from H, C¹-C² alkyl, C¹-C³ substituted alkyl, C³-C²0 aryl, C³-C²0 substituted aryl, C³-C²0 substituted aryl, C³-C²0 arylalkyl, C³-C²0 substituted aryl- 25 alkyl, acyloxymethyl esters —CH²-C(=O)R² and acyloxymethyl carbonates —CH²-C(=O)OR² where R² is C¹-C³ alkyl, C¹-C⁵ substituted alkyl, C³-C²0 aryl and C³-C²0 substituted aryl;

 R^3 is selected from H, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ substituted alkyl, or CH_2OR^8 where R^8 is $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ hydroxyalkyl and $C_1\text{-}C_6$ haloalkyl;

 $\rm R^4$ and $\rm R^5$ are independently selected from H, NH $_2$, NHR and NR $_2$ where R is C $_1\text{-C}_6$ alkyl; and

 R^6 and R^7 are independently selected from H and C_1 - C_6 alkyl;

or a physiologically functional derivative thereof;

in combination with an effective amount of a compound of the formula

wherein B is selected from adenine, guanine, cytosine, uracil, thymine, 7-deazaadenine, 7-deazaguanine, 7-deaza-8-azaguanine, 7-deaza-8-azaguanine, 7-deaza-8-azaadenine, inosine, nebularine, nitropyrrole, nitroindole, 2-aminopurine, 2-amino-6-chloropurine, 2,6-diaminopurine, hypoxanthine, pseudouridine, 5-fluorocytosine, 5-chlorocytosine, 5-bromocytosine, 5-iodocytosine, pseudocytosine, pseudoisocytosine, 5-propynyl-cytosine, isocytosine, isocytosine, 7-deazaguanine, 2-thiopyrimidine, 6-thioguanine, 4-thiothymine, 4-thiouracil, O⁶-methylguanine, N⁶-methyladenine, O⁴-methylthymine, 5,6-dihydrothymine, 5,6-dihydrouracil, 4-methylindole, and a pyrazolo[3,4-D]pyrimidine; and

R is selected from H, C_1 - C_{18} alkyl, C_1 - C_{18} substituted alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} substituted alkenyl, C_2 - C_{18} alkynyl, C_2 - C_{18} substituted alkynyl, C_6 - C_{20} aryl, C_6 - C_{20} substituted aryl, C_2 - C_{20} heterocycle, C_2 - C_{20} substituted heterocycle, phosphonate, phosphophosphonate, diphosphophosphonate, phosphate, diphosphate, triphosphate, poly-

ethyleneoxy or a physiologically functional derivative thereof; and

a pharmaceutically acceptable carrier.

B2. A composition of embodiment A1 wherein, in formula 1, R^1 and R^2 are independently selected from H, C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl, C_6 - C_{20} substituted aryl, C_6 - C_{20} arylalkyl, C_6 - C_{20} substituted arylalkyl, acyloxymethyl esters — $CH_2C(=O)R^9$ and acyloxymethyl carbonates — $CH_2C(=O)R^9$ where R^9 is C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl and C_6 - C_{20} substituted aryl; and R^3 , R^4 , R^5 , R^6 and R^7 are independently H or C_1 - C_6 alkyl.

C3. A composition of embodiment A1 wherein, in formula 2, B is cytosine or a 5-halocytosine.

D4. A composition of embodiment A1 wherein, in formula 1, R^1 and R^2 are independently selected from H, C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl, C_6 - C_{20} substituted aryl, C_6 - C_{20} arylalkyl, C_6 - C_{20} substituted arylalkyl, acyloxymethyl esters —CH₂C(=O)R⁹ and acyloxymethyl carbonates —CH₂C(=O)OR⁹ where R^9 is C_1 - C_6 alkyl, C_1 - C_6 substituted alkyl, C_6 - C_{20} aryl and C_6 - C_{20} substituted aryl; and R^3 , R^4 , R^5 , R^6 and R^7 are independently H or C_1 - C_6 alkyl; and, in formula 2, B is cytosine or a 5-halocytosine.

E5. A composition of embodiment D 4 wherein, in formula 1, R¹ and R² are independently selected from H, acyloxymethyl esters —CH₂C(=O)R° and acyloxymethyl carbonates —CH₂C(=O)OR° where R° is C₁-C₆ alkyl; and R³, R⁴, R⁵, R⁶ and R¹ are independently H or C₁-C₆ alkyl; and, in formula 2, B is cytosine or a 5-halocytosine and R is H.

F6. A composition of embodiment E5 wherein, in formula 1, R¹ and R² are independently selected from H and —CH₂C (—O)OCH(CH₃)₂; R³ is —CH₃; and R⁴, R⁵, R⁶ and Rⁿ are H; and, in formula 2, B is 5-fluorocytosine and R is H.

G7. A pharmaceutical composition comprising a pharmaceutically effective amount of [2-(6-amino-purin-9-yl)-1-methyl-ethoxymethyl]-phosphonic acid diisopropoxycarbonyloxymethyl ester fumarate (tenofovir disoproxil fumarate) or a physiologically functional derivative thereof and a pharmaceutically effective amount of (2R, 5S)-4-amino-5-fluoro-1-(2-hydroxymethyl-1,3-oxathiolan-5-yl)-(1H)-pyrimidin-2-one (emtricitabine) or a physiologically functional derivative thereof; and a pharmaceutically acceptable carrier.

45 H8. A pharmaceutical formulation of embodiment A1 to G7 further comprising a third active ingredient selected from the group consisting of a protease inhibitor, a nucleoside or nucleotide reverse transcriptase inhibitor, a nonnucleoside reverse transcriptase inhibitor, and an integrase inhibitor.

I9. A pharmaceutical formulation of embodiments A1 to H8 in unit dosage form.

J10. A method for the treatment or prevention of the symptoms or effects of an HIV infection in an infected animal which comprises administering to said animal a pharmaceutical composition of embodiments claims A1 to I9. The invention claimed is:

1. A fixed-dose combination comprising 300 mg of tenofovir disoproxil fumarate and 200 mg of emtricitabine wherein the combination exhibits equal to or less than 5%degradation of the tenofovir disoproxil fumarate and emtricitabine after six months at 40° C./75% relative humidity when packaged and stored with silica gel desiccant, and wherein the fixed-dose combination is a tablet.

2. The fixed-dose combination of claim 1 where there is less than 10% degradation of tenofovir disoproxil fumarate over a 24-hour period.